PHYSIKALISCHE UND SPEKTROSKOPISCHE DATEN VON TRIFLUORMETHYL-SELENOL UND DERIVATEN

Willy GOMBLER und Hans-Ulrich WEILER

Lehrstuhl für Anorganische Chemie II der Ruhr-Universität, Postfach 102148, D-4630 Bochum (F.R.G.)

SUMMARY

The characterization of the compounds CF_3SeX (X = H, Cl, Br, CN, CF_3 , SeCF₃) is completed by the report of melting points, boiling points, enthalpies of vaporization and entropies of vaporization. Ultraviolet and mass spectra are presented and discussed. An improved synthesis for CF_3SeH is reported.

ZUSAMMENFASSUNG

Die Charakterisierung der Verbindungen CF_3SeX (X = H, Cl, Br, CN, CF_3 , $SeCF_3$) wird durch die Angabe der Schmelzpunkte, Siedepunkte, Verdampfungsenthalpien und Verdampfungsentropien ergänzt. UV- und Massenspektren werden angegeben und diskutiert. Eine verbesserte Darstellungsmethode für CF_3SeH wird mitgeteilt.

EINLEITUNG

Im Rahmen 77 Se-, 19 F- und 13 C-NMR-spektroskopischer Untersuchungen an CF₃Se-Verbindungen [1] interessierten insbesondere CF₃SeH und dessen Derivate. Es zeigte sich, daß die bereits vor mehr als zwanzig Jahren erstmals dargestellten einfachsten Vertreter der Verbindungsklasse CF₃SeX (X = H, Cl, Br, CN, CF₃, SeCF₃) [2, 3] bisher nur sehr unvollständig charakterisiert worden sind. Bei der Darstellung und Reinigung dieser Substanzen erwies sich vor allem als sehr nachteilig, daß ihre Dampfdruckkurven nicht bekannt waren. UV- und Massenspektren der CF₃Se-Verbindungen waren ebenfalls unbekannt.

Die Darstellung von CF_3SeH aus $(CF_3Se)_2Hg$ und HCl liefert nur 28 % des gewünschten Produkts [2]. Setzt man anstelle von HCl jedoch HI ein, so bildet sich CF_3SeH nahezu quantitativ.

ERGEBNISSE UND DISKUSSION

Die Schmelzpunkte sowie die Ergebnisse der Dampfdruckmessungen sind in Tabelle 1 zusammengestellt. Die Siedepunkte sind durch Extrapolation der Ausgleichsgeraden (Korrelations-koeffizienten r > 0,9995) berechnet worden. Bemerkenswert ist die Verdampfungsentropie von CF_3SeCN . Sie liegt deutlich über der Trouton-Konstante von ca. 88 J/mol K und weist auf intermolekulare Wechselwirkungen in der flüssigen Phase hin. Der ungewöhnlich hohe Schmelzpunkt von CF_3SeCN und der sehr niedrige von CF_3SeCF_3 sind ein Hinweis auf sehr unterschiedliche Wechselwirkungen in der flüssigen Phase. Der Siedepunkt von CF_3SeH ist um 3,6° niedriger als in [2] angegeben. Möglicherweise ist der zu hohe Siedepunkt von -14,5° C [2] auf Verunreinigungen von CF_3SeCF_3 zurückzuführen, welches bei der Darstellung von CF_3SeH aus Hg(SeCF₃)₂ und HCl als Hauptprodukt entsteht.

Über <u>Massenspektren</u> von CF_3 Se-Verbindungen wurde bisher in der Literatur noch nicht berichtet[7]. Von analogen Chalkogenverbindungen sind bisher die Massenspektren von CF_3 SH [8], CF_3 SCl, CF_3 SSCF_3 [9, 10], CF_3 SF [10] und CF_3 SCF_3 [9], ferner von CF_3 OF und CF_3 OOCF_3 [11] bekannt.

Den Massenspektren aller in Tabelle 2 aufgeführten Verbindungen ist der Basispeak ${\rm CF_3}^+$ gemeinsam. Die bevorzugte Bildung von ${\rm CF_3}^+$ -Ionen ist damit zu erklären, daß ${\rm CF_3}^+$ isoelektronisch mit dem außerordentlich stabilen Molekül BF₃ ist. Alle Verbindungen ergeben einen Molekülpeak, der auch bei den obigen anderen Chalkogenverbindungen auftritt. Dies ist typisch für die zweibindigen Chalkogenderivate. Dagegen ergeben z. B. ${\rm CF_3SF_3}$ und ${\rm CF_3SF_5}$ [12] keine Molekülsignale. Die relative Intensität der Molekülpeaks steigt mit zunehmender Atomzahl des Chalkogens an; z. B.: ${\rm CF_3OOCF_3}$ 1,4 %, ${\rm CF_3SSCF_3}$ 25,4 %,

TABELLE 1

	Schmp. ^O C	Sdp. ^O C	∆H _v KJ/mol	∆S _v J/mol K	A	В	
CF ₃ SeH	-136	-18,1 -14,5 [2]	22,5	88,4	7,499	1178	
CF ₃ SeCl	-95	30,9 31 [2,3]	27 , 6	90 , 9	7 , 628	1443	
CF ₃ SeBr	-88	54,6 54 [2] 57 [3]	30,9	94,3	7,806	1614	
CF ₃ SeCN	-20	81,0 84 [2] 80 [3] 87 [5]	37,9	107,1	8,474 8,342	1981 1962	[5]
CF_3SeCF_3	-189	-2,9 -2 [2]	24,4	90,2	7,593	1273	
CF ₃ SeSeCF ₃	-101	73,4 73 [2] 70 [3,6]	33,1	95,6	7,873	1730	

Physikalische Daten von Trifluormethylselenverbindungen

Schmp. = Schmelzpunkt, Sdp. = Siedepunkt, ΔH_v = Verdampfungsenthalpie, ΔS_v = Verdampfungsentropie, A und B gelten für die Dampfdruckgleichung log p = A - B/T (p in Torr, T in K)

Folgende Dampfdruckdaten wurden gemessen, p in Torr (T in K): <u>CF₃SeH</u>: 106(215,6) 186(224,6) 300(234,5) 380(239,3) 575(248,6) 595(249,3) 820(256,9) 895(259,1). <u>CF₃SeC1</u>: 9(215,3) 24(231,2) 44(241,7) 79(252,4) 119(260,4) 172(267,9) 261(277,3) 319(282,3) 537(294,6) 657(299,5) 703(301,5) 774(303,9) 934(309,2). CF₃SeBr: 4(224,0) 10(236,9) 20(248,9) 33(257,5) 54(266,6) 83(275,1) 98(278,4) 123(283,3) 146(287,0) 174(291,0) 240(297,5) 303 (302, 2) 360 (307, 3) 439 (311, 9) 518 (316, 5) 610 (320, 9) 694(324,8) 717(325,8) 734(326,3) 740(326,6) 804(329,6). <u>CF₃SeCN:</u> 17(273,1) 60(296,0) 169(316,4) 338(332,5) 553(344,8) 665(351,6) 763(355,0). <u>CF₃SeCF₃: 38(211,7) 58(218,3) 79(223,6) 145(234,5) 220(242,6)</u> 327(250,9) 444(257,3) 563(262,9) 670(267,3) 766(270,6). CF₃SeSeCF₃: 11(253,6) 20(263,7) 34(272,5) 48(279,3) 64(284,9) 74 (287,9) 84 (290,4) 98 (293,7) 151 (305,0) 237 (314,4) 358 (324,7) 450(331,2) 616(342,7) 763(345,3).

 $CF_3SeSeCF_3$ 33,3 %, bezogen auf CF_3^+ 100 %. Entsprechendes gilt für die Verbindungspaare CF_3OF/CF_3SF , CF_3SC1/CF_3SeC1 und $CF_3SCF_3/CF_3SeCF_3^{(*)}$. Dies zeigt, daß die positive Ladung des Molekülions mit abnehmender Elektronegativität des zentralen Chalkogenatoms besser stabilisiert werden kann.

Weiterhin ist bemerkenswert, daß im CF_3SH im Gegensatz zum CF_3SeH das Ion CF_2S^+ den Basispeak bildet und CF_3^+ nur in untergeordneter Intensität auftritt [8]. Im CF_3SeH sind die Verhältnisse gerade umgekehrt. Offenbar ist die intramolekulare Abspaltung von HF beim Fragmentierungsprozess CF_3EH^+ $\longrightarrow CF_2E^+ + HF$ (E = S, Se) im Falle von CF_3SeH wegen des größeren innermolekularen Abstands von H und F weniger begünstigt.

Aussagekräftig ist auch die relative Intensität des Fragments CF_3Se^+ . Sie ist abhängig vom ionischen Charakter der Se-X-Bindung und erreicht im CF_3SeCl mit dem elektronegativsten Substituenten X ihren höchsten Wert.

Die in Tabelle 2 angegebenen relativen Intensitäten beziehen sich auf Ionen mit den Isotopen ⁸⁰Se, ⁷⁹Br und ³⁵Cl. Die erhaltenen Isotopenmuster stimmen mit aus natürlichen Häufigkeiten berechneten überein.

Zur Klärung der Frage nach dem dominierenden Faktor, der für die ⁷⁷Se-chemischen Verschiebungen von Bedeutung ist [1], sind die <u>Elektronenspektren</u> der CF₃Se-Verbindungen von großem Interesse, da die Elektronenanregungsenergien als bestimmende Größe im paramagnetischen Term für Se-Abschirmungskonstanten diskutiert werden. Bisher sind keinerlei CF₃-substituierte Selenverbindungen elektronenspektroskopisch untersucht worden, dagegen sind die Spektren einiger entsprechender Verbindungen des Schwefels in der Literatur zu finden [13, 14]. Aliphatische Selenole haben nach [15] im UV-Bereich keine Absorptionsmaxima, von Dialkylseleniden ist nur (C₂H₅)₂Se vermessen worden [16], aber Dialkyldiselenide sind gut untersuchte Verbindungen [17].

Die Farbe der CF₃Se-Verbindungen läßt schon erkennen, daß die Absorptionsmaxima gegenüber den CF₃S-Verbindungen eine

^{*)} Die relativen Intensitäten aus dieser Arbeit wurden mit [9] verglichen, da ähnliche Aufnahmebedingungen eingehalten wurden. Die in [10] angegebenen Spektren sind mit einer kälteren Ionenquelle gemessen worden, wobei größere Molekülpeaks auftreten.

TABELLE 2

70eV-Massenspektren	von '	Trifluormethy	ylsele	nverbindungen
---------------------	-------	---------------	--------	---------------

		<u>Rel</u>	ativ	'e In	tens	ität	e n
m/e	Ion	CF 3SeH	CF 3 SeC1	CF ₃ SeBr	CF 3 SeCN	CF3SeCF3	(CF ₃ Se) ₂
26	CN ⁺				2,0		
31	CF ⁺	14,1	16,2	9,5	4,6	5,8	8,0
35	c1 ⁺		3,6				
50	CF_2^+	7,2	9,5	4,9	3,0	3,2	4,8
51	CF2 ^{H⁺}	6,7					
69	CF_3^{+}	100,0	100,0	100,0	100,0	100,0	100,0
79	Br ⁺			4,1			
80	se ⁺ .	21,8	47,5	18,6	9,4	6,4	15,3
81	SeH	18,6					
92	CSe ⁺						
106	SeCN				8,7		
111	CFSe ⁺	11,8	6,0	3,0	2,1	7,0	2,8
115	SeCl ⁺		16,4				
130	CF2 ^{Se⁺} .	16,2	14,3	11,0	1,0	6,5	4,3
131	CF2 ^{SeH⁺}	7,5					
149	CF3Se ⁺ .	4,3	40,6	23,3	2,0	4,5	7,7
150	CF ₃ SeH ⁺	34,3					
156	CF2SeCN ^T						
159	SeBr			15,6			
160	SeSe ⁺						25,2
165	CF ₂ SeC1 ⁺		5,1				
175	CF ₃ SeCN ⁺				15,2		
184	CF ₃ SeC1 ⁺		30,6				
199	CF3SeCF2					2,0	
209	CF2SeBr			3,2			
210	CF2SeSe						2,9
218	CF3SeCF3					11,9	
228	CF ₃ SeBr'			31,0			
229	CF ₃ SeSe						25,0
279	CF3 ^{SeSeCF2}						4,8
298	CF3SeSeCF3						33,3

Rotverschiebung aufweisen müssen: z. B. ist CF₃SeCl rot, CF₃SCl gelb, CF₃SeSeCF₃ gelb und CF₃SSCF₃ farblos. Die Elektronenspektren aller in Tabelle 3 und Abbildung 1 angegebenen Verbindungen zeigen ein Absorptionsmaximum im Bereich zwischen 230 und 290 nm. Dieses ist sicherlich auf Elektronenübergänge, die durch den Chromophor -Se- verursacht werden, zurückzuführen, denn sowohl Alkane als auch Perfluoralkane zeigen in diesem Bereich keine Absorption. Die langwelligen Banden von $\rm CF_3SeC1$ (380 und 480 nm) und $\rm CF_3SeBr$ (414 und 510 nm) können auf die Beteiligung der Halogenatome Cl bzw. Br zurückgeführt werden, da die anderen Verbindungen keine entsprechenden Banden aufweisen. Im Vergleich mit CF₃Cl (zwei Banden zwischen 200 und 120 nm [18]) und $CF_3Br(\lambda_{max} 265 nm [19])$ übt der Einbau des Chromophors -Se- einen beträchtlichen bathochromen Effekt aus. Schließlich zeigen alle Verbindungen eine sehr intensitätsstarke Absorption im Bereich <200 nm. Diese zeigt im Falle von CF₃SeCl, CF₃SeCN und CF₃SeCF₃ bei niedrigen Gasdrücken eine Schwingungs-Feinstruktur. Die Feinaufspaltung von etwa 1,7 nm wird durch eine Molekülschwingung im angeregten Zustand von ca. 400 bis 430 cm⁻¹ verursacht. Nach schwingungsspektroskopischen Untersuchungen von MARSDEN [4] kommen somit Se-Ligand-Streckschwingungen in Betracht, die in diesen drei Verbindungen alle ähnliche Frequenzen aufweisen.

Der Vergleich der Lage der Absorptionsbanden mit verwandten Verbindungen führt zu folgenden Erkenntnissen: $CF_3SeSeCF_3$ (289 nm) zeigt im Vergleich mit $CH_3SeSeCH_3$ (316 nm -[17]) eine Blauverschiebung, aber gegenüber der entsprechenden Schwefel verbindung CF_3SSCF_3 (235 nm [13]) eine Rotverschiebung. Die Absorption liegt noch innerhalb des für Dialkyldiselenide gefundenen Bereiches von 286 nm bis 316 nm [17]. Für CF_3SeCF_3 (277 nm) ist eine noch größere Rotverschiebung gegenüber CF_3SCF_3 (210 nm [13]) zu beobachten. Da von CH_3SeCH_3 keine Daten bekannt sind, ist nur ein Vergleich mit $C_2H_5SeC_2H_5$ (250 nm [16]) möglich, der die Absorption von CF_3SeCF_3 als erstaunlich langwellig erscheinen läßt. Die Rotverschiebung der dem Chlor zugeschriebenen Absorption von CF_3SeC1 (380 nm) gegenüber CF_3SC1 (333 nm [14]) ist etwas geringer. Die Bande für CF_3SeC1 bei 232 nm hat im CF_3SC1 kein Gegenstück mehr im nahen UV-Bereich.

			-		-	
	^λ max (log ε)	λ_{min} (log ϵ)	λ_{max} (log ϵ)	^λ min (log ε)	λ_{max} (log ϵ)	Sh (log ε)
CF ₃ SeH		235 (1,53)	250 (1,58)			
CF ₃ SeCl		203 (1,64)	232 (2,28)	315 (0,41)	380 (1,55)	480 (0,84)
CF ₃ SeBr		220 (1,43)	268 (2,26)	350 (0,84)	414 (1,84)	510 (1,35)
CF ₃ SeCN	198 (2,30)	245 (1,10)	286 (1,58)			
CF3SeCF3		250 (0,79)	277 (0,89)			220 (0,94)
CF ₃ SeSeCF ₃	198 (2,68)	245 (1,71)	289 (2,36)			345 (1,64)

Elektronenspektren von Trifluormethylselenverbindungen

TABELLE 3

Sh = Schulter, geschätzte Lage des Maximums

Abb. 1. Elektronenspektren von Trifluormethylselenverbindungen

Für CF_3 SeH (250 nm) und CF_3 SH (218 nm [14]) gelten ähnliche Verhältnisse wie oben. Danach sollten auch Alkylselenole im Gegensatz zu der in [15] vertretenen Auffassung, daß sie keine Bande im nahen UV-Bereich haben, eine Absorption zeigen.

EXPERIMENTELLES

Darstellung der Verbindungen

 CF_3SeC1 und CF_3SeBr wurden durch Umsetzung von $Hg(SeCF_3)_2$ mit Cl_2 bzw. Br_2 im Molverhältnis 1:2 und $CF_3SeSeCF_3$ analog mit J_2 , jedoch im Molverhältnis 1:1 dargestellt [2]. CF_3SeCN wurde aus CF_3SeC1 und AgCN [2], CF_3SeCF_3 aus CF_3COOAg und Se [20] erhalten. Die Reinigung der Rohprodukte, die einige Prozent $CF_3SeSeCF_3$ enthielten, erfolgte durch mehrfache fraktionierte Kondensation. Auf diese Weise wurden jeweils geringe Anteile des gesamten Produkts als Reinsubstanz isoliert, die nur noch 0,5 bis 1 % $CF_3SeSeCF_3$ enthielten.

Für die Bestimmung des Gehalts an solch geringen Mengen F-haltiger Verunreinigungen in fluorierten Produkten ist die ¹⁹F-NMR-Spektroskopie dann hervorragend geeignet, wenn man als Maß die ¹³C-Satelliten des Hauptproduktsignals heranzieht.

Zur Darstellung von CF_3 SeH wurden in einer typischen Reaktion 8,85 g (17,8 mmol) Hg(SeCF₃)₂ in ein mit Ventil versehenes Glasgefäß eingewogen. Nach dem Evakuieren des Gefäßes wurden an einer Vakuumapparatur 4,43 g (17,3 mmol) Jodwasserstoff dazukondensiert (gasvolumetrische Messung, anschließende Wägung). Das Reaktionsgefäß wurde langsam auf Raumtemperatur erwärmt, einmal kräftig geschüttelt und über Nacht liegen gelassen. CF_3 SeH wurde aus dem auf -100° C (Äthanol-Kältebad) gekühlten Reaktionsgefäß in der Vakuumapparatur in ein auf -196° C (fl. N₂) gekühltes Kondensationsgefäß übergeführt. Ausbeute 5,17 g (34,5 mmol).

Bei -100° C läßt sich eine quantitative Trennung von CF₃SeH (p = 5 Torr) und CF₃SeSeCF₃ (p < 0,01 Torr) erzielen.

Geräte und Meßtechnik

Die Massenspektren wurden mit einem Massenspektrometer VARIAN MAT CH5 (Ionisierungsenergie 70 eV, Emission 30 u A, Ionenquellentemperatur 300[°] C) aufgenommen.

Zur Aufnahme der Elektronenspektren diente ein PERKIN ELMER SPECTROPHOTOMETER 402, welches einen Meßbereich von 190 bis 850 nm besitzt. Die Proben wurden an einer Vakuumapparatur in eine Aluminiumküvette mit Viton-O-Ringen und Quarzfenstern (Infrasil, Heraeus, Hanau, B.R.D.) übergeführt. Es wurden je nach Substanz Drücke zwischen 2 und 200 Torr eingestellt und Gasphasenspektren aufgenommen. Jede Substanz wurde bei mindestens vier verschiedenen Drücken gemessen. Die Berechnung des Extinktionskoeffizienten ε erfolgte nach folgender Gleichung:

 $\varepsilon = \frac{E \ 760 \ 22,4 \ 295}{p \ 273 \ 8,5} \ 1/mol \ cm$

 ${\rm E}$ = Extinktion, p = Druck in Torr, Küvettenlänge 8,5 cm, Temperatur 295 K.

Die Dampfdrücke wurden mit einem Edelstahlmembranmanometer (SENSOTEC, Typ 60B, Lieferfirma: Burster, Gernsbach, B.R.D.) mit einer Genauigkeit von ±1 Torr bestimmt. (Quecksilbermanometer sind ungeeignet, da einige der untersuchten Substanzen mit Hg reagieren.) Zu Temperaturen über 295 K gehörende Dampfdrücke wurden durch Siedepunktsbestimmungen unter entsprechenden Stickstoffdrücken mittels Siedestäbchen bestimmt.

Zur Schmelzpunktsbestimmung wurden die Substanzen in 6 mm-Glasröhrchen einkondensiert und die Röhrchen abgeschmolzen. Ein kleiner Temperaturfühler (Pt 100) wurde außen an die Stelle angebracht, wo sich der Flüssigkeitsspiegel befand. Nach dem Abkühlen durch Eintauchen der Probe in flüssigen Stickstoff, der sich bis zu einer Höhe von 20 cm in einem 80 cm hohen nicht verspiegelten Dewargefäß mit einem Innendurchmesser von 5 cm befand, wurde die zu messende Probe bis etwa 1-2 cm über den Flüssigkeitsspiegel des Stickstoffs herausgehoben. Dabei stieg die Temperatur langsam an. Der Schmelzpunkt war bei glasartig erstarrten Proben daran zu erkennen, daß eine am Flüssigkeitsspiegel ausgebildete trichterförmige Vertiefung schnell verschwand. In der Nähe des Schmelzpunktes wurde ein Temperaturanstieg von etwa 1/2 bis 1 Grad/min durch Regulierung des Abstandes über dem flüssigen Stickstoff eingestellt. Jede Messung wurde mindestens 5 mal durchgeführt. Reproduzierbarkeit $\pm 1^{\circ}$ C.

DANK

Herrn Prof. Dr. mult. A. HAAS für die großzügige Förderung dieser Arbeit.

LITERATUR

- 1 W. Gombler, Publikation in Vorbereitung.
- 2 J.W. Dale, H.J. Emeléus und R.N. Haszeldine, J. Chem. Soc., (1958) 2939.
- 3 N.N. Yarovenko, V.N. Shemania und G.B. Gazieva, J. Gen. Chem. USSR, 29 (1959) 924.
- 4 C.J. Marsden, J. Fluorine Chem., 5 (1975) 401.
- 5 N. Welcman und M. Wulf, Israel J. Chem., 6 (1968) 37.
- 6 N.N. Yarovenko, M.A. Raksha und V.N. Shemania, J. Gen. Chem. USSR, <u>30</u> (1960) 4032.
- 7 A. Haas in "Gmelins Handbuch der anorganischen Chemie",
 8. Auflage, Bd. 12, Ergänzungswerk, Verlag Chemie, Weinheim 1973.
- 8 W. Gombler und F. Seel, Z. Naturforsch., 30b (1975) 169.
- 9 N.R. Zack und J.M. Shreeve, J. Fluorine Chem., 5 (1975) 153.
- 10 W. Gombler, Z. anorg. allg. Chem., <u>439</u> (1978) 193.
- 11 J.L. Huston und M.H. Studier, J. Fluorine Chem., <u>13</u> (1979) 235.
- 12 W. Gombler, J. Fluorine Chem., 9 (1977) 233.
- 13 G.R.A. Brand, H.J. Emeléus und R.N. Haszeldine, J. Chem. Soc., (1952) 2549.
- 14 R.N. Haszeldine und J.M. Kidd, J. Chem. Soc., (1953) 3219.
- 15 D.L. Klayman und W.H.H. Günther, Ed., 'Organic Selenium Compounds: Their Chemistry and Biology', Wiley-Interscience New York, 1973, Kapitel 15.
- 16 G.M. Bogolyubov und Yu.N. Shlyk, J. Gen. Chem. USSR, 3<u>9</u> (1969) 1723.
- 17 G. Bergson, Ark. Kemi, 13 (1958) 11.
- 18 E.L. Garvin und A. Roder, Nucl. Instr. Methods, <u>93</u> (1971) 593.
- 19 G. Herzberg, 'Molecular Spectra and Molecular Structure III. Electronic Spectra of Polyatomic Molecules', Princeton, N.J., Toronto-New York-London, 1966, S. 162, 532, 626.
- 20 H.J. Emeléus und N. Welcman, J. Chem. Soc., (1963) 1268.